Imperfekcje konstrukcji zespolonych i aluminiowych [R3-4]

Artykuł w ciągu ostatnich 24 godzin czytało 1 Czytelników
[ Imperfekcje konstrukcji żelbetowych ] [poprzednie R3-3] ⇐ ⊗ ⇒ [następne R3-5] [ Imperfekcje konstrukcji drewnianych i murowych ]


Imperfekcje konstrukcji zespolonych

Przy obliczaniu stateczności konstrukcji zespolonych zgodnie z (PN-EN 1994-1-1+Ap1+AC, 2008) należy brać pod uwagę efekty drugiego rzędu, w tym naprężenia własne, imperfekcje geometryczne, miejscową niestateczność, zarysowanie, skurcz i pełzanie betonu oraz uplastycznienie stali konstrukcyjnej i zbrojenia. Siły wewnętrzne należy określać na podstawie analizy sprężysto-plastycznej.

Zgodnie z (PN-EN 1994-1-1+Ap1+AC, 2008, kl. 3.2.) obliczanie elementów zespolonych podatnych na imperfekcje (elementów ściskanych lub smukłych belek) należy prowadzić zgodnie z ogólnymi zasadami podanymi dla konstrukcji stalowych, a wartości podstawowych imperfekcji  przechyłowych przyjmować zgodnie z ( 3-2.1) do ( 3-2.4).

Imperfekcje konstrukcji aluminiowych

Zasady Eurokod 9 przykrywają zasady Eurokod 3

Postanowienia normy Eurokod 9 (PN-EN 1999-1-1, 2010) do projektowania konstrukcji aluminiowych są w istocie poprawioną i uogólnioną wersją postanowień normy Eurokod 3 (PN-EN 1993-1-1+A1, 2006). Dlatego uznajemy, że zasady podane w normie (PN-EN 1999-1-1, 2010) mają pierwszeństwo przed (PN-EN 1993-1-1+A1, 2006)

Imperfekcje przechyłowe

Globalne imperfekcje przechyłowe uwzględnia się przechyłem $\Phi$ (Rys. 3.4a) zgodnie z formułą ( 3-2.4) również z wartością podstawową $ \Phi_0=1/200$. Imperfekcje przechyłowe można zastąpić fikcyjnymi siłami poziomymi zgodnie z Rys. 3.2a. Wstępne imperfekcje przechyłowe uwzględnia się osobno w każdym z rozpatrywanych kierunków przechyłu W przypadku wielokondygnacyjnych szkieletów słupowo-belkowych budynków siły zastępcze przykłada się na wszystkich poziomach stropów i dachu.

Przechyły konstrukcji mogą powodować translacje lub obroty przekroju budynku (Rys. 3-4.1).

Rys. 3-4.1.  Utrata stateczności ram aluminiowych: a) imperfekcje przechyłowe SGI , b) zastosowanie metody hybrydowej HIM

Ograniczenie liczby krzywych wyboczeniowych

Zgodnie z (PN-EN 1999-1-1, 2010) lokalne imperfekcje łukowe oraz równoważne obciążenie od imperfekcji przyjmuje się zgodnie z Rys. 3.2b Wskazujemy od razu, ze zastosowanie sił fikcyjnych zgodnie z tą formułą nie zawsze jest właściwe (p. uwaga pod koniec pkt. 3.2)

Wprowadzono dwie klasy wyboczenia konstrukcji aluminiowych A i B ((PN-EN 1999-1-1, 2010, tab.3.2), które są zależne od rodzaju stopu aluminium, ale niezależne od kształtu przekroju kształtownika W zależności od klasy wyboczenia, przyjmowane są względne strzałki imperfekcji:

  • klasa A
    $e_0/L= 1/300$ ($n_L=300$) w analizie sprężystej ; $e_0/L= 1/250)$ ($n_L= 250$)  w analizie plastycznej,
  • klasa B
    $e_0/L= 1/200$ ($n_L=200$) w analizie sprężystej ; $e_0/L= 1/150)$ ($n_L= 150$)  w analizie plastycznej.

Przy tej okazji należy wskazać, że znaczne ograniczenie liczby krzywych wyboczeniowych również dla konstrukcji stalowych postuluje norma japońska JRA (Fukumoto, 1982). Zaleca bowiem jedną krzywą wyboczeniową położoną pomiędzy europejskim typem „b” i „c” , dla której $n_L \approx 200$ niezależnie od kształtu przekroju i typu analizy.  Pokazano, że mnożenie typów krzywych wyboczeniowych nie jest statystycznie istotne, więc w praktyce nie jest potrzebne.

Postulat ograniczenia liczby krzywych wyboczeniowych konstrukcji stalowych

W niniejszej pracy stawiamy postulat, by imperfekcje łukowe konstrukcji stalowych i aluminiowych przyjmować o wartości:

$$\begin{equation} e_{0,zmod}=\cfrac {L} {200}  \to  n_L =200  \quad \text { dla każdego przekroju i rodzaju analizy} \label {n_Lzmod} \end{equation}$$

Hipoteza ($\ref{n_Lzmod}$) może być zweryfikowana poprzez przeprowadzenie testów statystycznych na akceptowalnym poziomie ufności, który zdaniem autora należy przyjąć o wartości 95%.

Oddziaływania poziome od imperfekcji przechyłowych na stropy i podpory budynku szkieletowego przyjmuje się zgodnie z Rys. 3.6 (analogicznie jak w konstrukcjach stalowych lub żelbetowych).

Wymóg modelowania imperfekcji łukowych

Zgodnie z (PN-EN 1999-1-1, 2010) (podobnie jak (PN-EN 1993-1-1+A1, 2006) ) – imperfekcje łukowe generalnie mogą być pomijane (są uwzględniane przez współczynniki wyboczeniowe), ale powinny być obecne w modelu konstrukcji wrażliwych na efekty 2 rzędu, gdy co najmniej jeden węzeł końcowy elementu jest sztywny, a element jest smukły o smukłości liczonej dla pręta przegubowo-przgubowego $\overline \lambda > 0,5 \cdot\sqrt { \cfrac{A f_y}{N_{Ed}}} ( $f_y$ -granica plastyczności).

Zastosowanie metody hybrydowej

Ze względu na trudności w uwzględnieniu w modelu globalnym imperfekcji łukowych elementów oraz rozpowszechnioną metodę wyboczeniową, zaleca się, by w przypadku niepełnego uwzględnienia imperfekcji łukowych w analizie globalnej zastosować metodę HIM, zilustrowaną na Rys. 3.4b. (p. też pkt 1.3 – rozdział 1). Podobne zalecenie zawiera norma do projektowania konstrukcji stalowych  (PN-EN 1993-1-1+A1, 2006).

Imperfekcje skrętne

Jeśli analiza drugiego rzędu ma uwzględniać zwichrzenie elementów zginanych, to zastępcze imperfekcje tych elementów można przyjmować w płaszczyźnie najmniejszej bezwładności przekroju o strzałce równej $k e_0$, gdzie strzałka $e_0$ jest ustalona jak dla elementu ściskanego. Zaleca się $k=0,5$.
Specjalne uwzględnienie  imperfekcji skrętnych na ogół nie jest konieczne, ponieważ w konsekwencji wygięcia bocznego uzyskuje się imperfekcję skrętną zgodnie z formułą (3-2.8).


[następne R3-5] [ Imperfekcje konstrukcji drewnianych i murowych ]


Niniejszy artykuł jest częścią 4 rozdziału 3 podręcznika Imperfekcyjna metoda projektowania konstrukcji

Publikacja internetowa w wersji „free” z nieograniczonym prawem cytatu – z powołaniem się na autora i źródło:
Leszek Chodor, (2019), Imperfekcyjna metoda  projektowania konstrukcji, Encyklopedia  πWiki,
[ https://chodor-projekt.net/encyclopedia/imperfekcyjna-metoda-projektowania-konstrukcji/ ]

Historia edycji:
(2019-04-19, 30) Wersja 1.0 
Proszę społeczność Inżynierów w internecie o przesyłanie recenzji podręcznika  na adres  wydawnictwa biuro@chodor-projekt.net
Leszek Chodor

 

Literatura cytowana w tekście

Fukumoto, Y. (1982). Numerical Data Bank for the Ultimate Strengths Steel Structures. Der Stahlbau, (1).
PN-EN 1993-1-1+A1. Eurokod 3 - Projektowanie konstrukcji stalowych - Część 1-1: Reguły ogólne i reguły dla budynków (2006). UE: PKN.
PN-EN 1994-1-1+Ap1+AC. Eurokod 4 -Projektowanie zespolonych konstrukcji stalowo-betonowych - Część 1-1: Reguły ogólne i reguły dla budynków (2008). UE: PKN.
PN-EN 1999-1-1. Eurokod 9 - Projektowanie konstrukcji aluminiowych - Część 1-1: Reguły ogólne (2010). UE: PKN.

Related Hasła

Comments : 0
O autorze
* dr inż. Leszek Chodor. Architekt i Inżynier Konstruktor; Rzeczoznawca budowlany. Autor wielu projektów budowli, w tym nagrodzonych w konkursach krajowych i zagranicznych, a między innymi: projektu wykonawczego konstrukcji budynku głównego Centrum "Manufaktura" w Łodzi, projektu budowlanego konstrukcji budynku PSE w Konstancinie Bielawa, projektów konstrukcji "Cersanit" ( Starachowice, Wałbrzych, Nowograd Wołyński-Ukraina), projektu konstrukcji hali widowiskowo-sportowej Arena Szczecin Autor kilkudziesięciu prac naukowych z zakresu teorii konstrukcji budowlanych, architektury oraz platformy BIM w projektowaniu.
Translate »