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ABSTRACT: This paper present the resułts of an investigation of the equalisation of random results
of the measurements of static equiłibrium paths of composite compressed rods as a basis for the de-
termination oftheir eigenvalues in the form of criticalłoad bearing capacity. The criticałłoad bearing
capacity of composite rods was determined on the basis of equalised random measurements ofthe co-
ordinates of static equilibrium paths Pry) of fixed compressed composite rods fixed on both sides,
bearing random geometricał imperfections. For the equalisation of a few thousand random co-
ordinates (P,y) is used as an asymptotic regression function on the basis of structurał amplification of
transverse dispłacements of compressed rods with initiał buckling. The paper is illustrated with the
equalisation of the results of the investigation of a series of model s of composite compressed rods of
nominał slenderness A. = 34; 80, and 180, reported in the paper. An ałgorithm of equalisation of the
results of the investigation as well as conclusions resulting from the numerical analysis of resułt
processing are provided .

1. INTRODUCTION

The experimental critical load bearing capacity of compressed rods is most fre-
quently determined by Southwell's method [4] on rods fixed on hinged ends. The drawback
of this method is a strong influence of small friction on hinges on critical load bearing
capacity. The application of special permanent greases does not bring the results to reliable
values. Kowal (1995) [4] derived physical relations which make it possible to extend the
application of Soutbwell's method for the determination of critical load bearing capacity to
model s of rods fixed on both sides.

Southwell's metbod of determining critical load bearing capacity of rods with
geometrical imperfections is based on tbe tbeoretical solution of a c1assical problem of
nonlinear bending ofinitial flexure according to the sinusoid form

Yo = A sin(nx / I), (1)
where: A - amplitude ofrod flexure oflength l, x - co-ordinate ofrod axis.

In practice, compressed rods have geometrical imperfections of random shape and
random displacement initial amplitude, which can be described by a Fourier series (2)

n
y = L A; Sin(i11X / I) , (2)

;=\

It follows from research practice and theoretical investigations of initially bent
rods, taking into consideration the effect of transverse flexures on effort (Bijak (1996) [1])
that at the beginning of load increment a change of the sign of the transverse displacement



model. In such frequent cases during the further phase of load action, there follows an
arrangement of the sign of transverse displacement. However, in the initial interval of load

p < Pdn, (3)

rod transverse displacements behave contrary to Southwell's expectations. This problem
has been known for a long time, but so far no practical method of experimental determi-
nation of the critical load bearing capacity of compressed rods has been developed. The
behaviour of displacement in interval P < P,;" can be theoretically predicted by measuring
precisely geometrical imperfections and described by a Fourier series (2) determined indi-
vidually for each investigation model. Differential equations from which we can determine
individual criticalload bearing capacity for each model has the form (4)

E/y IV + p(y + j~1 Aj sin(i7Tx 11))" = O, (4)

where EJ - stiffness of rod section.
Displacement amplification determined from differential equation (4) has a basie

drawback in the case of rods built from fibrous composites: internal ("invisible") techno-
logical imperfections superimposed on "visible" geometrical imperfections cannot be ini-
tially measured. Occurrence of technological imperfections does not enable initial imper-
fections to be described by a Fourier series (4) in order to determine the structural formula
for transverse displacement amplification.

After ordering the signs of increasing transverse displacement y there follows
expected amplification which takes into account nonlinearity of second order, used by
Southwell for the determination of the critical load bearing capacity of rods on the basis of
their models with geometrical imperfections Yo = sin 1[X / l :

Yo
y = 1_ PI' (5)

IN.
where: y - total transverse displacernent, Yo - initial rod flexure, P - axial load, N. -Euler
critical load bearing capacity of rod.

Currently, the measurements of co-ordinates (P; ,y/) of static equilibrium path
(SEP) are carried out automatically and registered digitallyon diskettes in a set load step
!lP = P; - P;-1 ' or better in a set displacement step Ć1y = y/ - Yi-I The number of meas-

urements (P; ,yJ is practically arbitrary. most frequently being several thousand measure-
ments on one model.

The measurements retlect random measurement errors which result from the
testing machine, model s, and measuring instruments. They have influence on transverse
displacement amplification. The analysis of raudom displacements was carried out,
amongst others, by Liaw et al. (1989) [6).

The use of Southwell's modified method [4) for experimental determination criti-
cal load bearing capacity of composite rods with internal and external imperfections re-
quires application of a procedure which fulfils the folIowing conditions: l) we exclude the
initial interval O < P < Pali of the static equilibrium paths (SEPs) P(y). 2) we assume

occurrence of internal imperfections o in a rod which give an external effect in displace-
ments, 3) we take into account experiment errors Ye , 4) we equalise SEPs by the methods
of probability calculus.



We know pairs (P. y) from measurements. However, we do not know initial flexure Yo and

internal eccentric cam D. The criticalload bearing capacity of initially bent metal rod (4,5]
is determined directly on the basis of measured two coefficients (PI.Yl) and (P2,Y2) from
the solution of the equation set (6):

Ner = P2' Y2 - ~ .Yl , (6a)
Y2 -Yl

Yl' Y2(P2 - ~) (6b)Yo = ,
P2 'Y2 -~ 'Yl

However, arbitrary adoption of points U=: 'Yi) (i = 1,2) on the static equilibrium path gives
different criticalload bearing capacities N» due to the random properties of measurement.

The procedure of determining the critical load bearing capacity of compressed
rods will be shown by the example of the investigation of the critical load bearing capacity
of composite compressed rods carried out by Kował and Golaski (1996) (2] by means of a
measurement of co-ordinates (Pi. Yi) static equilibrium paths written on diskettes.

The folIowing characteristic co-ordinates can be distinguished in SEP:
l) Co-ordinate (P dm Yd,J which defines the end of the first interval O $; P $; Pa" of loads

with strongly random transverse displacements in the respective interval O $; y$; Yan ,

2) Co-ordinate (Pup. Yu~ which defines interval Pan $; P $; Pup of the correct behaviour of

transverse displacements y,]n $; y s Yup from interval P > P"p of amplifying destruction OT

change of the internal structure of rod materiał;
3) Co-ordinates (PL YL) of the limit load bearing capacity determined as the first maxi-
mum of equilibrium path.

Our task will be to equałise function Pry) in order to determine the initial criticał
load bearing capacity of rod Ner which has no change of the internal structure of rod ma-
terial during axiał loading.

Increase in reliability of the estimation of the critical load bearing capacity can be
obtained by equalising the static equilibrium path P(y) by the method of the least quadratic
deviation in the area Pan s P s Pup Selection of the form of regression curve for the phe-

nomenon of nonlinear transverse displacement of compressed rods with imperfections is of
considerable importance. In engineering linear and nonlinear regressions are used. Non-
linear regression curves are usually adopted in the form of power polynomials

;=n ;=n
P= 'L,G;Y; orreversefunction Y= 'L,G;·P/ 0' (7a,b)

;=0 ;=0

Power polynomials are also used in Rene Thom's catastrophe theory for fictitious descrip-
tion of a catastrophe.

This paper proposes determination of the Ieast critical load bearing capacity of
compressed rods with geometrical imperfections by means of the nonlinear regression
function conformable with the theoretical solution (4), henceforward referred to as an
asymptotic regression function.



2. EQUALISA TION OF THE RESUL TS OF SEP MEASUREMENTS OF COM-
PRESSED RODS BY MEANS OF ASYMPTOTIC REGRESSION CURVES

Let us take into consideration an asymptotic regression curve in the form of (5) modified
to the form of (8):

Yo
Y=Ye+1_p! I

jNcr

where dispłacement of curve was made by vałue Y. which results from measurement errors
(machines, sensors, record, etc.). This curve has asymptote y ~ 00 for P= NeT'

In order to estimate univocally parameters N cr'Yo,Y, ' it is necessary to know at

łeast three measuring points (P. 'YI)' (P2'Y2) and (P3'Y3):

(8)

-PIP2 (Y2 - YI) + ~~(y3 - YI) - P2P3(Y3 - Y2)
Ner = I

P; (Y3 - Y2) - P2 (Y3 - YI ) + P3 (Y2 - YI)

Y - (Y2 - YI)(Y3 - YI)(Y3 - Y2)(P2 - ~)(P3 - ~ )(13 - P2) I

0- [YI(P3 - P2) - Y2(P3 - m + Y3(P3 - P2»)· [YI(~P3 - fJP2) + YI(~P2 - P2P3)+ Y3(P2P3 - ~f3») (9b)

(9a)

-YIY2 (P2 - ~) + YIY3 (P3 - ~) - Y2Y3 (P, - P2)Y.= - ,
YI(F; - P2) - Y2(P3 -~) + Y3(P2 - PI)

The example of curve (4) is represented in Fig. l with the marked adjustment intervaI.
Intervał O:S; p:s; Pdn of augmented measurement errors can be easiły determined by the
expert method discarding measurements which are strongły different from expected ones.
The upper boundary Pup of intervał Pdn s P :s;Pup (or correspond y dn sY :s;Yup) can be

estimated experimentally by examining the structure of materiał or theoretically by exarn-
ining deviations from criticał łoad bearing capacity during the changes of the upper
boundary by the triał method.

Pdn - --------,--------
I I
I I

(9c)

Materiał damage
zone

Estabłished
experiment zone

Measurement
error zone

YuP y

Fig. l. Asymptotic regression curve



The program Mathematica v.2.2.3 [8,9) was used for the determination of asymptotie
regression. A proeedure from a paekage Statistics 'Nonlinear Fit' of syntax

Non/inearFiI[Data,ye +yo / (1- P / Ner), P, {ye ,yo, Ner}). (10)

where Data - a set of pairs of data (V, P). Routines used by NonlinearFit locate local
minimum in the "l merit function, so eareful choice of starting point be necessary.
Starting points for the parameters are taken to be those values minimising X2 merit fune-
tion out the set forming a 2P factorial design based parameters range.
Apart from that was applied the program MathC:4D Plus 6.0 Profesional Edition
(Mathsoft, Inc (1986-1995)[7). The folIowing procedures were used: Data Analysis/ Sta-
tistical function/Curve fitting. From the procedures: Lincar regression, Polynomial re-
gression, Multivariate polynomial regression, Linear combination of functions, Fitting
arbitrary functions to data, the last procedure was applied. Function genjit(...) was used to
find coefficients of the given regression function for the set of experimental data.

Asymptotic regression curve (8) was adjusted (o the results of the experimental
investigation with a selection of adjustment selection P,b, ~ P ~ Pup (or correspond

y dn ~ Y ~ Y"p)· The beginning of adjustment interval was determined as Pan = kan Pmax '

where Pmax the maximum on the equilibrium path measured during the investigation, and
kan = O,l or 0.2; 0.3. The end of adjustment interval was selected according to dependence
Yup = kupYmax , kup = 1,00 to 0,20

In the prepared caIculation sheets for the program Mathematica as well as Math-
CAD we obtained: l) simple data statistics in the particular adjustment intervals (number
of data, mean values of displacements and forces, standard deviations, and coefficients of
linear correlation, 2) parameters of regression curve (8): initial displacements Yo and criti-
cal force Ner, 3) plots of regression curves against experimental points.

The determination of the coefficients of asymptotic regression is shown by the
examples from the work [2) in which the static equilibrium paths of eomposite rods of
dimensions shown in Table l are determined experimentaIly.

Table l. Measurement parameters [2 J subjeet to equalisation
Item Slenderness Sample Section Length l. Number NLr [kN]

group symbol bxh [mm] I [mm] of from
measur. measur.

1 Ąn=180 001 16,72x5,24 548 181,15 6969 0,981
2 003 16,39x5,18 557 186,75 1792 0,907
3 005a 16,67x517 528 176,84 889 1,030
4 006a 16,67x5,17 525 175,88 936 1,063
5 Ąn=80 007 16,72x5,24 255 84,29 1248 3,906
6 008 16,72x5,24 253 83,23 1432 4,004
7 009 16,72x5,24 236 78,01 3056 4,712
8 010 16,72x5,24 236 78,01 1400 4,688
9 Ąn=34 011 16,72x5,24 104,5 34,54 2559 19,849
10 012 16,72x5,24 104,5 34,54 2533 19,336
11 013 16,72x5,24 104,0 34,37 2719 20,361
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Table 2 Parameters of asymptotic regression curves
Item Group Sample NL YuplYmax Ner Yo Ye Ner/N Ne [2]

symbol measur. L
kN - kN mm mm - kN

1 An=180 001 0,981 0,5 0,955 0,042 0,504 0,973 1,016
2 003 0,907 0,5 0,943 0,597 -11,2 1.040 0,838
3 OOSa 1,030 0,5 1,060 0,336 -0,932 1,029 1,029
4 006a 1,063 0,5 1,074 0,087 -1,19 1,010 1,020

5 An=80 007 3,906 0,5 3,943 0,068 -1,05 1,009 3,959

6 008 4,004 0,5 4,048 0,072 -0,852 1,011 3,915
7 009 4,712 0,5 4,759 0,078 -0,951 1,010 4,787
8 010 4,688 0,5 4,728 0,062 -1,20 1,009 4,861

9 A.n=34 011 19,849 0,35 20,01 -0,010 -1,01 1,008 27,797
10 012 19,336 0,35 19.92 0,069 -1,12 1,030 19,984
11 013 20,361 0,35 20,72 0,016 -1,12 1,018 29,368

After a few test s the beginning of adjustment interval was established arbitrarily
as Pa" = O,2N rrax '

Selection of the end of the adjustment interval has a sigrufieant influence on the
estimation of critical force. After carrying out many analyses, stabilities of regression
curves were determined.



On this basis the excess of co-ordinates occurring in irregular clusters was re-
moved, and records bearing material damages were eliminated, too A correct estimation of
load interval Pdn::;; P ::;;Pup and displacement y dn sy::;;Yup enabled us to adjust regression

curves comfortably to the measured static equilibrium paths and to determine stable pa-
rameters N er ,Yo,Y e ' Stability coefficient was ca 1%.

Fig. 2 shows adjustment of regression curves measured SEP of composite com-
pressed rods.

After a few tests the beginning of adjustment interval was established arbitrarily
as Pdn = 0,2 Nmax • tinuous line is superimposed on a selected regression curve together
with its asymptote. Analyses perfonned are shown in Table 2. In Table 2 are shown critical
load bearing capacities Ner equalised from regression curves (8) and compared with
Southwell's critical load capacities N. experimentally determined in the work [2].

3. REMARKS AND CONCLUSIONS

Numerical experiments connected with adjustment of the asymptotic regression
curve to experimental random co-ordinates of static equilibrium paths point to a signifi-
cant area of elastic behaviour of composite compressed rods which exceeds critical load.
This distinguishes composite rods from metal rods.

Application of the asymptotic regression curve and developing conditions for its
stability enables one to determine critical bearing capacities and initial flexures as well as
eccentric cams of compressed rods made from composite materiał.

On the basis of experimentally determined critical load bearing capacity Ner, it is
possible to construct a curve of critical strength applied in designing and referred to as
buckling curve eTer (..ł).
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