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SENSITIVflY ANALYSIS OF INITIALLY CURVED 111IN-WAl,LED BARS 

L Chodor, R Bijak 

1. Introduction 

An initially cwved thin-walled rod mxlel established in 

this paper is a generalization of the straight thin-walled 

beam mxlel presented by authors in the paper [2]. 

Sensitivity analysis of ~term has been presented by 

many authors • i.e.: [5, 1 ,7]. An interesting application of 

the method can be found in optimization problems [5] and 

reliability analysis [3]. 
In this paper, a direct differentiation method for de

termining sensitivity of thin-walled structures is studied. We 

explore geometrically non-linear problems which are fun

damental in slender structures (e.g. engineering metal stmc

tures). 

The central problem in sensitivity analysis is the de

termination of the implicit variations in the response field'i 

generated by a specified design variation In generaL there 

are three classes of methods to solve this problem: the finite 

difference problem, the adjoin variable method and the 

direct differentiation method. Finite difference sensitivity 

analysis methods are simple to implement, but they can be 

computationally expensive and deficient in tenm of acwracy 

and reliability [7]. For this reason, the adjoin variable and 

direct differentiation methods are generally preferred de

spite their relative complexity. 

2. Computation of structure st!nsitivity R!sponse 

In this paper, we shall investigate the respon.;e of ~

tern changes a due to changes in basic variables b (such a'i 

force, geometric and material parameters) by the usc of a 

direct differentiation method. 

Computation of the response of ~ystem scnc;itivity by 

direct differentiation with the standard incrementnl proce

dure is given by [11]: 

Kr·8a=-lP(a1). (I) 

(2) 

where a,8a- genernl displacement vector and its increment 

respectively, KT = ()tp I oa- tnngent stiffness matrix, 8a -

increment of ~tern respon.;e, tp - residual force corre
sponding to the level of response ~tern a 1 , I - iteration 

step inc;ide increment N. Partin! derivatives of residual forces 

nrc given by 

- ()tp = -( (()tp)N . (da)N-1 + (8tp)N) 
abk (8a)N_1 dbk abk (

4
) 

with the right side 8tp I cb k called pseudo-load vector. In 

both equation-; (1) and (3), tangent matrix KT is the same. 

In geometrically non-linear problem, right side vector in 

formula (3) is dependent on scnc;itivity in previous incre

ment step N-1 as follows [7], as shown in equation ( 4). De

rivative ( d a) N _1 I db k is known from previous step, and it 

is detennined based on the derivative(da)N_2 I dbk in 

advance step. We proceed in this way until start increment 

3. Initially wrvcd tbin-"Mlllcd rod model 

Position vectors descnbing the location of an arbitrary 
material point (X 1, X 2 , S) in the initially cwved thin-

walled rod in the undeformed configuration R(Xu,S) and 

in configuration after deformation r(Xa,S} (a=1,2, 

(X 1, X 2 ) c n, Fig 1) are given by relations (5,6). 

Fig I. Kinematic description of the thin-walled rod 

-30-

D
ow

nl
oa

de
d 

by
 [

31
.1

78
.7

8.
19

2]
 a

t 0
9:

34
 0

5 
M

ay
 2

01
5 



R(Xa,S)=R0 (S)+XaEa, 

r(Xa,S)=r0 (S)+Xa.ta + f(Xl,Xz)p(S)t3 

where: f( X 1 X 2 ) - is a prescribed (given a priori) warping 

function, and p( S) is the (unknown) warping amplitude. In 

the above equation, r
0 

descnbing position vector of the line 

of rentroid and orthonormal basis t i results from the rota

tion of the material (orthonormal) basis E; . Denoting the 

orthogonal transformation by A= l; ® E; and inserting 

kinematic relation (5) into the definition of the deformation 

gradient tensor, the following expressions are derived: 

ar ar axa ar as 
F = aR = ax a ® aR + as ® aR = 

=gu®Ga+g3®G3=(ta +/,aPtJ)®Ga + 

+ [{r0 )' +ffi x (X a ta + [pt3) + [p't3] 

®G
3 = A{l3 + pE3 ®/,a Ea + 

+.!. w03p(Xzf 1 - Xtf z)E3 ® E3 + 
g 0 ' ~ 

1 1 w0;E; x XaEa + - [f + 
go go 

+K x (XaEa +[pE3) +fp'E3]® E3} (7) 

In equation (4) (•) = o(•) (•)' = 8(•). Gi are con-
,a. axa. • as 

travariant base vectors in undefonned configuration 14]: 

Gl = El + Xzw03 E3' (8) 
go 

(9) 

(10) 

(11) 

and after deformation by 

(tJ = .Q+A~A l;=.Ql;= ' [ T] -
= ( w + Aw 0 ) x t i = ~ x t i 

- T 
where .Q = .Q+A.Q

0
A , 

.Q = dA AT 
dS . 

(14) 

(15) 

(16) 

(17) 

For the application of elastic-plastic constitutive equa

tion (actual development), it is proved convenient to intro

duce the second-order objective Biot strain tensor [9]: 

T 
H=A F-l3 =pE3®f,aEa+ 

+ - 1
-w03p (Xzf 1 - Xtf z)E3 ® E3 + go . , 

+ -1-[r + {K- w01 Et) x Xa Ea + 
go 

+K xfpE3 +fp'E3] x E 3 . (18) 

Ba..ed upon the assumption of small deformation 

strains, but upon the arbitrary displarement and rotations, 

the Lagrangian strain tensor E is equal to corotational 

engineering strain tensor 8 : 

Invariant constitutive equation in terms of 8 and its 

conjugate (in the sense of internal work) rotational Cauchy 

stress tensor cr can be written as: 

(20) 

where P represents first Piola-Kirchoff stress tensor and C 

is four-order modules ten'iOrwritten in terms of the con-;tant 

E and G for the isotropic elastic material 

The vectors of stress resultants: n, N, stress couples m, 

Centroidal line strain'i and mrvatures are represented by M in spatial and material form respectively, hi-shear ~- an 

vectors: hi-moment Br are obtained by the integration of stress 

(12) 

T- T 
K=A w=A w+w 0 . (13) 

Beam cmvatures are represented by the skew

symmetric tensor ~, .Q, .Q or axial vector w 0 , w, ffi , 

respectively. Ouvatures before deformation arc expressed 

by 

vector over the cross-section: 

T I N =A n = cr dA 
3 ' A 

-31 -

(21) 

(22) 

(23) 
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where use has been made of the relation [9]: 

p3 = p ·E3, 

Relations (21-26) in vector form are e"l'ressed by: 

(24) 

(25) 

(26) 

(27) 

(28) 

cr 0 = TIE0 (29) 

where 

(30) 

(31) 

r

A 0 0 1 
n = o A o 

0 0 l2 8x8 

(32) 

For preparation of our linearization process, we ex

plicitly derive the linearized constitutive equations resultant 

from form (21-26): 

(33) 

~M= L[AT (r-r0 )]x(C 3 ~£ 3 ]dA (34) 

fMt = f [faG· ~f.a3 + _!__(X 2 f 1 -
A , go , 

(35) 

(36) 

where C3 = Diag(E.G.G) and change strain at arbitrary 

point (X 1 , X 2 ) c .0 is given by: 

- 1 A ~E 3 = - b '~E 0 · 
go 

(37) 

Xz -XI 0 Al 

(39) 

(40) 

Virtual work e"l'ression (equilibrium equation) for 

thin-walled rod is given by: 

11~8a,a) = J {nTroa · cr0 - 8a · Fexr }ds = 
[O,LJ 

= IJ1itt (8a,a) - 111m (&I, a) (41) 

where N a, Ba represent the shape function and strain

displacement matrix, re~pectively: 

N~l3 Na[r6f 0 

0 l T 0 N~l3 0 0 (42) 
"" = 

0 0 Na N' 
a 7x8 

linearized finite element equation, is derived from 

(41) in form: 

(43) 

where: 

KT =U(K~ +K~b) (44) 
e 

In equation (43), 

~a= [ M 0 , ~w, ~p JL 1 represent the incremental degrees 

of freedom of centroidal position veL1or r0 , orthogonal 

tran'iformation ten'ior A and warping amplitude p, respec-
. M h . I iffness . KG ttvely, K ab n:present'i t c matena st matnx, ab 

represents geometric stiffnes.'i matrix, 'l'int, 'I' ex-t represent 

the internal and ex1emal force vector as follows: 

M f T T Kr1b = Ha ·TI · D·TI .JJbdS, (45) 

L 

f T D= Ah ·C·AhdA, (46) 

A 

G T 
Kab = fLa ·b·LadS'. (47) 

L 

In the above equation, La and b represent displace-l" 0 I 
(A!J]H= 100 0 pf -Xz Az :] (38) ment gradient matrix and stress matrix, respectively: 

0 1 0 -pf 0 xl A3 

. 32. 
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(48) 

(49) 

4. Sbape sensitivity analysis oflhin-l\'lllled rod 

The sensitivities of an integral expression are computed 

after its transformations into the isoparametric domain [10], 

whose shape does not depend on the design variables. The 

Jacobian of this transformation IJh (s,)l can be expressed in 

tetmi of the nodal coordinates, so it can also be differenti

ated in order to known the integral sensitivities. Using this 
techniques, right side pseudo-load vector ( 8'1' I 8b k ), com-

putation of the response of system sensitivity (formulas (3-

6)) is given by 

(50) 

where the sensitivity of the Jacobian is: 

81.~ =l.~tr(rl ~) 
abk abk 

(51) 

We assume that cross-section consists of elements of 
equal thickness, location of an arbitrary point X = Xu. Ert 

of cross-section is given by isoparametric interpolation: 

/;, YJ E [-1,1) ---)- X = 

N~ode 
:L N1 (s)x6 + YJ · ~ · v (s) (52) 
/=1 

I 
where X0 is position nodal point on the middle-line in 

cross-section element, it is thickness of section ele
ment. v(s) is vector perpendicular to middle-line. 

5. Conclusion 

1. Computation sen<>itivity of the geometrically non-linear 
system response of 3-D structures consisting of thin
walled rods is effected parallely with standard incre
mental procedure. 

2. In this paper, sensitivity for a response of system is for
mulated via direct differentiation method due to possi
bility of its simple extension to the elastic-plastic range. 

3. Direct differentiation method requires analytical calcu
lations of derivative expression of matrix occurring in re
sidual force. 

4. Isoparametric formulation make possible analysis of 
response sensitivity to change in structure shape. 

5. The model of an initially curved thin-walled rod formu
lated with use of strain as a symmetric part of Biot ten'iOr 
make relatively simple expressions of sensitivity analysis. 

6. The adopted measure of strain lead<> to simple expres
sions of residual force, which simplifies calcuiations of 
derivatives in the method direct differentiation. whereas 
Green-Lagrange strain mem.ure would lead to compli
cated calculations. 
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PWNASIENH) KREIVl) SfRYPI) JAUfRUMO ANAIJZE 

L Chodor, R. Bijak 

Santrauka 

Darbe siiiloma nauja trimaci4 kreiv4 plonasienit) konstrukcij4 
(arba sistem4) jautrumo analizCs metodika. Uilkoma, kad kon
strukcijos dirba tamprioje stadijoje, taciau gali patirti didclius pos
Iinkius ir posiikius. Konstrukcijos Jautrumas bazinit) kintamtli4 
(pavyz&iu~ jegt~, geometrijos ar me&ia84 parametf4) pol>yci4 
atZvilgiu nustatomas tiesioginio diferencijavimo metodu. standartine 
Zienkiewicz ir Taylor pasiiilyta prieaugi4 procediira. 

Siiilomi metodai .iliustruojami trimacio kreivo plonasienio 
strypo pavyz&iu Strypo matematiniame modeJxie jvertintos 
skersines slyties bei skerspjiivio susukimo deformacijos. Parodyta, 
kad siiiloma metodika tinkama modeliui realizuoti baigtinit) elc
menl.l! metodu. Strypo baigtinis elementas fonnuojamas virtualaus 
darbo principu. ISvestos vist! baigtinio elemento struktiirini4 ma
tricl! iSrais'kos. 
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