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SENSITIVITY ANALYSIS OF THIN-WALLED BARS

Summary

Sensitivitv analysis of a three-dimensional elastic thin-walled structures being capable of in-
corporating large displacement and large rotation is developed and examined. The solution
process and the formation of tangent operators are presented in 2 systematic manner and sen-
sitivity for a response of system is formulated via direct differentiation method. A geometn-
cally non-linear . three-dimensional rod model which incorporates transverse shear and tor-
sion-warping deformation is developed. The model incorporates the classical notion bi-
moment and bi-shear in a geometrically exact context. The derived formulations are suitable for
finite element implementation. An example which illustrates the performance of the formula-
tion is presented.

1. Introduction

A thin-walled rod model established in this paper is generalization of the prismatic Ti-
moshenko rod model through appending of warping displacement (Simo.Vu-Quoc (1991)).
which makes possible to analyze such phenomena as lateral buckling and torsion instability. In
this model 1t 1s not possible to analyze local instability (instability plates of profile).

Sensitivity analysis of systems has been presented by many authors . i.a.: Dems.. Mroz
(1985). Arora etal. (1988). Michaleris et al. (1994). An interesting application of the method
can be found in optimization probiems (Mroz et al. (1985)) and rehiability anaiysis (Chodor.
Bijak (1996)).

In this paper, a direct differentiabon method for determining sensitivity of thin-walled
structures 1s studied. We explore geometrically non-linear problems which are fundamental in
the slender structures (e.g. engineening metal structures).

The central problem in sensitivity analvsis is the determination of the implicit variations
in the response fields generated by a specified design variation. In general. there are three
classes of methods to solve this problem: the finite difference problem. the adjoin variable
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method and the direct differentation method. Finite difference sensitivity analysis methods are
simple to implement. but they can be computationally expensive and deficient in terms of accu-
racy and reliability (Michaleris et al. (1994)). For this reason. the adjoin variable and direct dif-
ferentiation methods are generally preferred despite their relative complexity.

2. Computation of response of structure sensitivity
A steady-state non-linear problem may be expressed as:
Y(5a.a) = ¥, (5a,a) - ¥ . (5a.2) =0, m

where: a. 3a - general displacement vector and its increment respectively, ¥, (5a. a)- internal

force vector. W, (8a, a) - external force vector.

In this paper. we shall investigate the response of system changesa due to changes in
basic variables b (such as force, geometric and material parameters) by the use of a direct dif-
ferennation method.

2.1. Computation of the sensitivity by direct differentiation method in the in-
cremental problem

Computation of the response of non-linear system with the standard incremental pro-
cedure is given by (Zienkiewicz, Taylor (1991)):
KT'53="‘P(31). a,,=a, +0a (2a,b)

where: K, = 6¥W/ da - tangent stiffness matrix, da - increment of system response. ¥ - re-
sidual force corresponding to the level of response systema ,, [-iteration step inside increment
N . Relation (2) obtained for first-order Taylor series expansion (1) about point a,

Partial derivatives of residual forces (1), are evaluated by directly differentiation with re-
spect to each design parameter b, i.e.:

(3)

K T
db, ob,
with the right side 6 / 8b, called pseudo-load vector. In both equations (2a) and (3) tangent
matrix K is the same.

2.2 Geometrically non-linear formulation
In geometrically non-linear problem right side vector in formula (3) is dependent on
sensitivity in previous increment step N-/ as follows (Michaleris et al. (1994)):
o (en e, @) o
ob, (a)y_, db, ob, )

Derivative (da) ,._, / db, is known from previous step, and it is determined based on the de-
rivative(da) ,,_, / db,. in advance step. We proceed in this way until start increment.
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3. Thin-walled rod model

Position vectors describing the location of an arbitrary material point (X;,.X,,S) in the

initially straight thin-walled rod in the

undeformed configuration R(.X,..5)

and in configuration after deformation

r(X,.5) (=12, (X, X:)c Q. Fig

1)is given by :
R(X,.S)=R,(S)+X,E, (Sa)
r(X,.5)=r,(S)+ X, ¢, +

+f(X1=X:)P(S) 3 )
where: f(X,X,) - is a prescribed
(given a priori) warping function, and
p(S) - is the (unknown) warping am-
plitude. In the above equation, r, de-
scribing position vector of the line of
centroid and orthonormal basis t. results from the rotation of the matenial (orthonormal ) basts

E. . Denoting the orthogonal transformation by A =t, ® E,, and inserting kinematic relation
(5) into the definition of the deformation gradient tensor, the following expressions are derived:
or or
aX as

=(t, + £uPty) @ E, +[(r,) + @ x (X t, + fpt;) + f't,| O E

Fig. 1. Kinematic description of the thin-walled rod

T ®E, =
(6)

=A{1,+pE, ® [ E, {T +Kx (X E, + fpE,) + 'E,|®E,}

In equation (6) (s) = E’(T.) (o) = X . and centroidal line strains are represented by vectors:
) .
F=AT(I'(‘)'—E3, K:AT(D (7a.b)
Beam curvatures are represented by the skew-symmetric tensor ( *) or axial vector in
spatial or matenial form. respectively:
. A -
O=Ox = dA I'(=K><=A7dA
dS ds
For th° application of elastoplastic constitutive equation ( actual development). it 1s
proved convenient to introduce the second-order objective Biot strain tensor { Simo. Vu-Quoc
(1991)):

H=AF-1,=pE, ®f,E, +[[ +Kx X E, +Kx f)E, + f'E,]®E, (9)

(8a.b)
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Based upon the assumption of small deformation strains. but upon the arbitrarv dis-
placement and rotations. the Lagrangian strain tensor E is equal to corotational engineering
strain tensor €

| 1 -
E=5(F -F-l,)=5(H+H )=¢ (10)
Invanant constitutive equation in terms of € and its conjugate (in the sense of internal
work) rotational Cauchy stress tensor G can be written as:

6=A"TeA=C:E= AP (1

where P represents first Piola-Kirchoff stress tensor and C is four-order modules tensor written
in terms of the constant E and G for the isotropic elastic material.

The vectors of stress resultants: n,N, stress couples m.M in spatial and material form
respectively, bi-shear M, and bi-moment B, are obtained by the integration of stress vector

over the cross-section:

n.—.hydA . N= /\Tn=L6;dA, (12a.b)
m=j“(r—r0)xp3dA , M= ATmzL[AT(r—r(,)]xégLM , (12¢.d)
Mj‘ = tJ'IAf.up“dA » B, =E; 'Lfasz : (12e.f)
where use has been made of the relation (Simo, Vu-Quoc (1991)):
p’=P-E, 6,=6E,=ATp’=6,E, (13a.b)
Relation (12) in vector form is expressed by: '
o, =I%,. (14)
where:
T T {-A 0 ()ﬂ (13a-¢)
Z, =[N’M’M/"Bf]sx1 %o =[n’m’M/"Bf]8x1' =10 A 0
0 0 1,

For preparation of our linearization process, we explicitly derive the linearized consti-
tutive equations resultant from form (12):

AN = LC3A€:3dA,

aM = [ [N (r )] <[, 4

MM =1t;-[, fop*dd

(16a-d)

AB, = E, '[4.fC3AésdA
where C, = Diag(E,G.G) and change strain at arbitrary point (Xl ,X :) < Qis given by:
Ag, = A, - Ag,. (17
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001 X, -X, 0 0 f
A,=[1 00 0 pf -X, f, Of . (18)
01 0 -pf 0 X, f. O]

Ae, =[AT, AK.Ap.Ap’]‘:‘! , (19)

Virtual work expression (equilibrium equation) (1) for thin-walled rod is given by:
Woa.a)= | {[TBa-o,-da-F,} dS="¥,(5a.2) - ¥, (5a.a)
o1y
where V, . B, represent the shape function and strain-displacement matrix, respectively:

(20

N, N[E] 0 o

B/=| 0 N1, 0 0 (21)
0 0 N, N/
Tx8
Linearized finite element equation, is derived from (20) in form :
K,Aa=Y¥_-Y¥,_, (22
where:
K, =U(K} +K3) .. (23)

In equation (22) Aa = [Ar(, , Aw, AP]:“ represent the incremental degrees of freedom
of centroidal position vector r, , orthogonal transformation tensor A and warping amplitude p.
respectively, K, represents the material stiffness matrix, K, represents geometric stiffness
matrix, ‘¥ .\P, represent the internal and external force vector as follows:

—JB -I1I" -D-I1-B,dS, D= jA ‘C-A,dA, Kgb—j'L‘ b LS. (245

In the above equation L, and b represent displacement guadlent matrix and stress ma-
trix. respectively:

VI, 0 0 0 0 - |
L, = 0 N1 0 , b=|0 0 “él‘il (25)
0 1, 0] i i@ 9r{n®r-(5-n)L]]

4. Shape sensitivity analysis of thin-walled rod

Consider a finite element discretization of the reference line of centroids ¢, (Fig.1)
consisting of N, nodal points R} [=l,.., N, .Denotingby N, () the N:odg element
shape functions with isoparametric co-ordinate in the element & e [- 1, l] . The mapping

LR, = £ N, (R, 26)
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then defines a parametrization of ¢, via local element shape functions.

The local parametrization (26) of the curve ¢, is related to the arc-length parametriza-
tion used in the preceding section via the local differential relation:
) - NZE:" dN / (E_,)

i=1 <

ds = 1Jh(g)||.azg where  J’( R/ (27a.b)

called the jacobian isoparametric transformation.
As an example, for linear isoparametric elements N° =2 while N (&) =1(1-¢)and

N.(3)= %(] +&) are the local element shape functions (Zienkiewicz. Taylor (1989)):

Notice that the reduced numerical integration should be used in (24) to avoid serious
shear locking for low-order interpolations or membrane locking for higher-order interpolations.
No spurious modes are known to appear as a result of reduced integration for beam element. (
As an example possible schemes are (a) linear. isoparametric interpolation functions-reduced
quadrature : 1 point Gauss quadramre, full quadrature: 2 Gauss quadrature. (b) qudratic.
isoparametric interpolation functions- reduced quadrature : 2 point Gauss quadrature, full quad-
rature: 3 Gauss quadrature ).

The sensitivities of an integral expression are computed afier its transformations into the
isoparametric domain (Vidal, Haber (1993)), whose shape does not depend on the design vari-
ables. The jacobian of this transformation |J"(£) can be expressed in terms of the nodal coor-

dinates. so that, it can also be differentiated in order to known the integral sensitivities. Using
this techniques right side  pseudo-load vector (¥ / 8b,. ), computation of the response of svs-

tem sensiovity (formulas (3.4)) is given by

fa HTB&I-O’“Jd:
(/"Pm(&,a)= (-1'[1 i -

@, @, (28)

['i‘” ke 3 . %

T -
= | im—B-c(,J +l'[7—§-c,,J . g 4T ‘B-g, el :
oh, oh, ah
where the sensitivity of the jacobian is:
\
al = Jtr[(.l’] é’— ’ (29)
a, Ay
Because this paper is an incroduction to sensitivity analysis of the elasto-plastic systems.

we make numerically integration over cross-section by Gauss quadrature. We assume that
cross-section consist of elements of equal thickness. location of an arbitrary pomt X = X' E
of cross-section is given by 1soparametric interpolation:

.L’o‘lc

N .\n , . . ’ . ‘;
ne [-L1]-X= X }\,(;)X")-n-;-v(;), (30)

/=1 -

J e

where X is position nodal point on the middle-line in cross-section element. 1 is thickness of

section element. (£} is vector perpendicular to middle-line.
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5. Example

Thin-walled beam is made of matenial described by Young module E=205GP and
Kirchoff module G=80 GPa. Beam by length 1=6 m is made of a I-section : cross-section
height h=300 mm. flange thickness t=10,7 mm. web thickness t,=7.1 mm. It is subjected a
concentrated external torsional moment M =2kNm on free end.

The relationships between the sensitivity of free end rotation ¢ on the changes of
flange width b and nominal width b are shown in Fig. 2.

Sensitivity of rotation on the changes of flange width is relationally big in the whole
examined range and rises with decreasing nominal flange width. For [-section IPE300 nominal
flange width is 150 mm and serustivity of rotation angle is. about 15-times less than sensitivity
for rectangular cross-section. '

0 005 010 015 020
Fig. 2. Sensitivity of thin-walled beam free end rotation on the changes width flange in rela-
tionship of nominal width b
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6. Conclusion

1. Computation sensitivity of the geometrically non-linear system response of 3-D structures
consisting of thin-walled rods is effected parallely with standard incremental procedure.

2. In this paper sensitivity for a response of system is formulated via direct differentiation
method due to possibility of its simple extension to the elastic-plastic range. Such procedures
are currently being developed by the present authors.

3. Direct differentiation method requires analytical calculations of derivative expression of ma-
trix occurring in residue force.

4. Isoparametric formulation make possible analysis of response sensitivity to change in struc-
ture shape.

3. The model of a thin-walled rod formulated with use of strain as a symmetric part of Biot ten-
sor make possible a relatively simple extension of sensitivity analysis to the case initial curva-
tures and pretwists of a thin-walled rod.

6. The adopted measure of strain leads to simple expressions of residual force. which simplifies

calculations of derivatives in the method direct differentiation, whereas Green-Lagrange strain
measure, would lead to complicated calculations.
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