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PLASTIC FAILURE PROCESS OF BEAMS TAKING INTO CONSIDERATION

SHEAR FORCES

Chodor Leszek +

SYNOPSIS

A theoretical analysis of the failure process of beams is performed taking
into consideration shear forces.
In the experimental investigation of the process of plasticization of
transversely bended beams a photomechamcal method is employed for
the estimation of the shapes of plastic fronts and tensometric test is
employed to estimate section efforts.
It is shown that, taking into consideration shear forces in the limit plastic
state of beam made from an elastic-perfectly plastic material, full plastic
hinges are formed simultaneously in all critical sections.
However, in the performance of beam made from a work-hardening
material, practically there will be no equalization of effort and the degree
of plasticization of critical sections.

INTRODUCTION

Plastic failure of beams protected against stability loss consists in formation of such a number
of full plastic hinges that the structural system (or its part) becomes geometrically variable.

Plastic hinge is identified with the state of full plasticization of section as a result of plastic
redistribution of stresses which are in equilibrium sectional forces.

It follows from the classical, generally accepted theory of limit load capacity [1] that, during
an increase of the load of a beam made form elastic-perfectly plastic material, plastic hinges
are formed successively in critical sections until beam load capacity is exhausted. Such an
understanding of the process of beam failure in which there occurs a distinct sequence of the
formation of plastic hinges is deeply rooted in the consciousness of investigators and
engineers. Beam plastic failure is identified with the formation of the last plastic hinge.

The present paper performs an analysis of the process of beam failure taking into
consideration shear forces. Results of the experimental investigation of process of failure of
transversely bended beams are presented using the photomechanical method and also
tensometric method

It is shown that full plastic hinges are formed simultaneously in all critical sections ..

"tectmotoatcet University ot Kielce, Al. 1000-Iecia Panstwa Polskiego 5, 25-314 Kielce, Poland



In beams made from a work-hardening material, reaching uniform plasticization in critical
sections practically impossible. Due to strains from pressure of surface forces, an elastic
kernel remains under concentrated forces, and a fulI plasticization of sections occurs at a
certain distance on both sides of the concentrated force.

THEORETICAL ANALYSIS OF BEAM FAILURE

A theoretical analysis of the proces s of beam failure was performed by the example of beams
with rectangular section made from an elastic-perfectly plastic material (Prandtl material).

Idealization ofbeams was performed by dividing it into one-dimensional elastic-plastic finite
elements defined in the space of sectional forces. Formulas of Navier and Zuravski are
assumed to be pertinent for the description of normai ax and shear 7:xy stresses. Continuity
of stresses along the beam length is secured in a parabolic distribution of shear stresses in the
elastic kernel and nulIing of these stresses in the plasticized part of the section. It results from
the basie equations of the mechanics of a solid body that in order to fulfill the Navier's
conditions of equilibrium, the matrix of stresses must be supplemented with stresses ay which
result from variability of stresses 7:xy along the beam length, i.e. from sectional changes of
shear forces or variability of the height of the elastic core. However, even in this case the
conditions of compatibility for strain are not fulfilled.

A model with properties described above is shown in Fig. 1.
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Fig. 1. One-dimensional model ot an elastic-plastic beam element

In this model is omitted a stress from the pressure of surface forces, and on this account plastic
front can be described by one formula along the whole length of the element, and critical
section occurs in the place of the action of extreme bending moments.

Stiffness of the elastic-plastic beam element was ca1culated from the energetic definition
(Castigliano theorem - part II [2]):

dU
dPr =Yr

where: U - a complementary energy , P; - fictitious generalized force, Yr - displacement in
the place and direction of the action of Pr.

(1)



In Table 1 are given analytical expression for a derivative of complementary energy Ui-k by a
certain variable X for element (i-k) of a rectangular section unloaded between nodes. The
boundary values of relative bending moments m« =Mx 1 Mi-k (x=i,k) depend on
variableX and can adopt arbitrary values from the range [-1, 1]. Moment Mi-k is a pure plastic
load capacity of the section ( for rectangular section bxH is: Mi-k =fybH214, where fy is a
plasticity limit). Contribution of shear stresses to a derivative of energy is expressed by the
components n , ne ,

TABLE 1. Derivation of complementary energy for an element of rectangular section

dUi-k
dX = Fi-k (mi, tnk, li-k) =

- 2 li-k ami dmk
Mi-k EI;-k [ dX (ti + fi) + dX (tk + rk)]

I mil < = 2/3 1--- ti_=_A.:....[C_i-_2_7_m_k3_/.:...:4l'-,_n _=_3_B......;(,-m_i+_m.:...:k) -I

Imkl < =2/3 tk= A[Ck- 27mi3/4], rk= 3B(mi+mk)

2 Imi I < = 2/3 1-- ti_=_A.;;....[C_i+_d_k_-2_7_m_k.;;....],_n_=_B_[9_k_+_3_(2_m_i_+_m_k_)/_2l----II
Imkl > =2/3 tk= A[dk+ek(mi+mk)- 27mi(m?/4-1)), tk= B[gk+3mi/2+fk(mi+mk))

I mil > = 2/3 I---__ t_i=_A.:...:[,-d_i+_e_i(,-m_i+_m.:...:k)......;-_2_7_m_k(.:....m_k_2/_4-_1:....:.)l_,_r._I=_B.:...:[:.,::g_i+_3_m_k_/2_+_t..:...:1(,-m_i+_m.:...:k)..:...l_--ł
3 Imkl < =2/3 tk= A[Ck+di-27mil, rk= B[gi+3(2mk+mi)/2]

4 I mi I > =2/3 1--- ti_=_A.:....[d_i+_dk_+_e_k...:...(m_i_+_m_k.:...:)l,-,_ri_=_B.:....[g.:....i_+--=9......;k_+_fk...:...(m_i_+_m_k...:...))=-----11

Imkl > =2/3 tk= A[di+dk+ek(mi+mk)], rk= B[ gi+gk+fk(mi+mk)l

A= 2 B= 1+v.Jfi-k)2 27 2 V3 I 13"281 (mi+mk)2' 15 (Ii-k ,Cx=~x(3mxx+2mx), dx=[20-12 3(1- mx) lsgn(mx)

ex=-18V3(1-lmxI)V2, fx 2~' gx=(2-V3(1-lmxI)V2sgn(mx),

where: (x=i,k), (xx=k,i), (E,v) - (Young's Modulus, Poisson's ratio) in the elastic range

If node sectional forces are combined in vector M= [Mt.M»] T, then the corresponding node
displacements of element (i-k) Y=!(jJi,(jJk]T will be obtained from Table 1 after substituting
X =Mi or X = Mk, respectively. Because dmxldMx =l/Mi-k (x = i,k) , then

- 4-k T
Y=Mi-k E'T. [(ti+ri), (tk+Tk)] . (2)

11-k

In the elastic range Imi I < 2/3, Imj, I <2/3, and after performing adequate transformation,

one gets known linear relations ti = 6~ (2Mi-Mk), tk 6~ (2Mk-Mi), which
l-k l-k

define the matrix of flexibility irrespective of the shape of cross-section. In other cases
coefficients tx, rx are nonlinear functions of node moments.



By a limit plastic state will be regarded such a state in which plastic mechanism is put into
operation, and displacements tend to infinity. It can be shown [3], that under the assumption
of smalI displacements, plasticization of whole transverse section of beam determined
staticalIy, need not be unequivocal with reaching of the limit plastic state.

Without infringing the assumption of smalI strains, but taking into consideration shear forces,
it is possible to show simultaneity of the formation of full plastic hinges in the limit plastic
state. It will be shown by the example of a two-span beam loaded by concentrated forces in
midspan.

In order to estimate the coefficients of section effort over support mx and under force mp in
the function of load P, the condition of kinematic admissible dllldme =O use to one's
adventage. Combining adequate components from Table 1the following nonlinear equations
was obtained

F(O,mp,l) + F(-mp,-mx,l) = O. (3)
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Fig.2. Example ot simultaneity ot the tormation ot plastic hinges

If we take into consideration shear forces, completion of the formation of plastic hinges in
the span and over the support folIows under the same load. It can be shown that they are fulI
hinges, ie. they lead to infinite displacements of the beam axis.

If we neglect shear forces, the plastic hinge will be first formed overthe support under load- -
2.88 Pl/M, and under the force already under the load of 3.ODPl/M.

Simultaneity of the formation of plastic hinges in the limit beam plastic state has important
practical consequences. The beam static scheme is unchangeable until the moment of failure,
and a change in the stiffness of sections in the process of plasticization is continuous and
smooth.



IHE PROCESS OE BEAM EAILUBE IN IHE LlGHI OE EXPERIMENIAL IESIS

An experimental photomechanical investigation of the shape of plastic fronts [4,5] was
performed. In Fig.3 are shown plastic fronts in the realization ofbeam of rectangular section.
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Fig.3. Shapes ot plastic tronts in a beam ot rectangular section [4J

It was observed systematically that the elastic kernel remained under a concentrated force,
and ą full plasticization of the section follows at distance t on both sides of the force.
Realizations of plastic fronts have an irregular shape (rugged).

Apart from the photomechanical tests, tensometric measurements of strains were made, and
also measurements of the reaction of two-span beams. The investigations performed on 2
series two-span beams (UH = 6 and UH = 10) with 5 beams in each series. For given load
level 25 reaIizations of a given staticaI quantity were obtained. AlI these realizations
constituted a basis for the calculation of the expected value and the coefficient of variation
of sectional bending moment.
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Fig.4. Trend and coefficient ot variation ot the relative span moment mp, and support
moment mx two-span beam observed in the experiment and comparison with theory



In Fig. 4 is shown a process of the formation of plastic hinges in support and span section of
series L/H = 6 (broken line), and L/H = 10 (continuous line with dots). A thick continuous
line shows a theoretical dependence of effort m on load Pl/M, calculated taking into
consideration the random elasticity of supports. The theoretical values of random coefficients
ofvariation were estimated using the Stochastic Finite Element Method [6].

For Prandtl's model of material full plasticization of a11hinges, occurs at the same moment.
However, in a real beam practically there will not occur equalization of the plasticization
state of critical sections due to the work-hardening of material and the action of stresses from
the pressure of surface forces. Support section is always more strained then span section ..

CONCLUDING REMARKS

1. In beams made from elastic-perfectly plastic material fu11plastic hinges are formed
simultaneously in all criticał sections. This phenomenon can be presented theoretica11y after
an improvement of the mathematical model of a beam by taking into consideration Shear
forces. Shear forces considerably change the qualitative character of the failure proces s
although quantitatively the effort changes are not high, particułarly in beams slenderness
encountered in practice.

2. In beams made from a work-hardening materiał under a monotonica11y increasing
one-parameter load reaching equal effort (and plasticization) of critical sections is practica11y
impossible. The criterion of a limit state of such beams must be formulated in rheological
terms.
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